Как найти центр круга

Формулы для площади круга и его частей

Числовая характеристика Рисунок Формула
Площадь круга

,

где R – радиус круга, D – диаметр круга

Посмотреть доказательство

Площадь сектора

,

если величина угла α выражена в радианах

Посмотреть доказательство

,

если величина угла α выражена в градусах

Посмотреть доказательство

Площадь сегмента

,

если величина угла α выражена в радианах

Посмотреть доказательство

,

если величина угла α выражена в градусах

Посмотреть доказательство

Площадь круга

,

где R – радиус круга, D – диаметр круга

Посмотреть доказательство

Площадь сектора

,

если величина угла α выражена в радианах

Посмотреть доказательство

* * *

,

если величина угла α выражена в градусах

Посмотреть доказательство

Площадь сегмента

,

если величина угла α выражена в радианах

Посмотреть доказательство

* * *

,

если величина угла α выражена в градусах

Посмотреть доказательство

4 теоремы про окружность в ЕГЭ и ОГЭ

Теперь я предлагаю ознакомиться с теоремами, которые появляются в комбинациях различных прямых и отрезков в окружности.

Теорема № 1: теория и задания из ЕГЭ и ОГЭ

Первая теорема про хорду и касательную звучит так: 

Угол между касательной и хордой равен половине дуге, которую стягивает хорда.

Подробнее с выведением вы можете ознакомиться на рисунке:

Как найти центр круга
Вот так выводится теорема про хорду и касательную

Однако хочу обратить ваше внимание, что если вы просто запомните формулировку, то многие задачи на окружность в ЕГЭ и ОГЭ покажутся вам супер-простыми и будут решаться в 1 действие. Давайте в этом убедимся:. Пример решения задачи на окружность в ЕГЭ и ОГЭ с использованием теоремы про хорду и касательную

Как найти центр круга
Пример решения задачи на окружность в ЕГЭ и ОГЭ с использованием теоремы про хорду и касательную

Вот так просто и быстро в 1 действие мы справились с задачей. Правда здорово?!

Теорема № 2: теория и задания из ЕГЭ и ОГЭ

А теперь давайте посмотрим на одну из моих самых любимых теорем. А любимая она, потому что без неё некоторые задачи кажутся практически нерешаемыми, а с ней их можно решить быстро и просто! Звучит она так:

Квадрат касательной равен произведению секущей на её внешнюю часть. Я советую запоминать именно словесную формулировку, так как чертежи и буквы на них могут быть разными, и есть риск всё перепутать.

Наглядно познакомиться с теоремой можно на рисунке ниже:

Как найти центр круга
Теорема: квадрат касательной равен произведению секущей на её внешнюю часть

И конечно же давайте отработаем на практике!

Как найти центр круга
Пример задания на теорему № 2

Если бы мы не знали ту теорему, которую только что прошли, то было бы много версий, как можно решить задачу. Кто-то начал бы строить радиус к касательной и рассматривать треугольники, а кто-то просто не стал бы решать, однако у нас есть формула: давайте её используем!

Решение:

Вот так просто решается это задание!

Теорема № 3: теория и задания из ЕГЭ и ОГЭ

Если вы ещё не устали от теорем, то давайте познакомимся с ещё одной, которая связывает хорду с диаметром (радиусом).

Эта теорема интересна тем, что работает в обе стороны:

Как найти центр круга
Вот так хорду можно связать с диаметром (радиусом)

Конечно же я не могу оставить вас без тренировки, поэтому посмотрим на следующую задачу:

Как найти центр круга
Задание на нашу теорему и его решение

Теорема № 4: пересекающиеся хорды

Последнее, с чем я вас познакомлю в контексте прямых и отрезков в окружности будет свойство пересекающихся хорд: 

Произведения отрезков пересекающихся хорд равны.

Как найти центр круга
Свойство пересекающихся хорд на рисунке

Для наглядности отрезки выделены разными цветами, так вам будет проще запомнить свойство.

А теперь отработаем его на практике:

Как найти центр круга
Задание на свойство пересекающихся хорд и его решение

Доказательство теоремы

Центр этой окружности – точка пересечения серединных перпендикуляров к сторонам треугольника.

Смотри, вот так:

Давай наберёмся мужества и докажем эту теорему.

Если ты читал уже тему «Биссектриса» разбирался в том, почему же три биссектрисы пересекаются в одной точке, то тебе будет легче, но и если не читал – не переживай: сейчас во всём разберёмся.

Доказательство будем проводить, используя понятие геометрического места точек (ГМТ).

Геометрическое место точек, обладающих свойством «\( \displaystyle X\)» — такое множество точек, что все они обладают свойством «\( \displaystyle X\)» и никакие другие точки этим свойством не обладают.

Ну вот, например, является ли множество мячей – «геометрическим местом» круглых предметов? Нет, конечно, потому что бывают круглые …арбузы.

А является ли множество людей, «геометрическим местом», умеющих говорить? Тоже нет, потому что есть младенцы, которые говорить не умеют.

В жизни вообще сложно найти пример настоящего «геометрического места точек». В геометрии проще. Вот, к примеру, как раз то, что нам нужно:

Тут множество – это серединный перпендикуляр, а свойство «\( \displaystyle X\)» — это «быть равноудаленной (точкой) от концов отрезка».

Проверим? Итак, нужно удостовериться в двух вещах:

  • Всякая точка на серединном перпендикуляре находится на одинаковом расстоянии от концов отрезка
  • Всякая точка, которая равноудалена от концов отрезка – находится на серединном перпендикуляре к ему

Приступим:

Проверим 1. Пусть точка \( \displaystyle M\) лежит на серединном перпендикуляре к отрезку \( \displaystyle AB\).

Соединим \( \displaystyle M\) с \( \displaystyle A\) и с \( \displaystyle B\).Тогда линия \( \displaystyle MK\) является медианой и высотой в \( \displaystyle \Delta AMB\).

Значит, \( \displaystyle \Delta AMB\) – равнобедренный, \( \displaystyle MA=MB\) – убедились, что любая точка \( \displaystyle M\), лежащая на серединном перпендикуляре, одинаково удалена от точек \( \displaystyle A\) и \( \displaystyle B\).

Теперь 2. Почти точно так же, но в другую сторону. Пусть точка \( \displaystyle M\) равноудалена от точек \( \displaystyle A\) и \( \displaystyle B\), то есть \( \displaystyle MA=MB\).

Возьмём \( \displaystyle K\) – середину \( \displaystyle AB\) и соединим \( \displaystyle M\) и \( \displaystyle K\). Получилась медиана \( \displaystyle MK\). Но \( \displaystyle \Delta AMB\) – равнобедренный по условию \( \displaystyle (MA=MB)\Rightarrow MK\) не только медиана, но и высота, то есть – серединный перпендикуляр. Значит, точка \( \displaystyle M\) — точно лежит на серединном перпендикуляре.

Всё! Полностью проверили тот факт, что серединный перпендикуляр к отрезку является геометрическим местом точек, равноудаленных от концов отрезка.

Это все хорошо, но не забыли ли мы об описанной окружности? Вовсе нет, мы как раз подготовили себе «плацдарм для нападения».

Рассмотрим треугольник \( \displaystyle ABC\). Проведём два серединных перпендикуляра \( \displaystyle {{a}_{1}}\) и \( \displaystyle {{a}_{2}}\), скажем, к отрезкам \( \displaystyle AB\) и \( \displaystyle BC\). Они пересекутся в какой-то точке, которую мы назовем \( \displaystyle O\).

А теперь, внимание!

Точка \( \displaystyle O\) лежит на серединном перпендикуляре \( \displaystyle {{a}_{1}}\Rightarrow OA=OB\);точка \( \displaystyle O\) лежит на серединном перпендикуляре \( \displaystyle {{a}_{2}}\Rightarrow OB=OC\).И значит, \( \displaystyle OA=OB=OC\) и \( \displaystyle OA=OC\).

Описанная окружность

Возможна и ситуация, при которой не окруж-ть вписана в многоуг-к, а наоборот, многоуг-к в окруж-ть. В таком случае все его вершины будут лежать на окруж-ти.

Как найти центр круга

Есть несколько важных теорем, касающихся описанных окружностей.

Как найти центр круга

Для доказательства построим в произвольном ∆AВС серединные перпендикуляры. Они пересекутся в некоторой точке О:

Как найти центр круга

Каждая точка, лежащая на серединном перпендикуляре, равноудалена от концов отрезка, к которому этот перпендикуляр проведен. Значит, и точка О равноудалена от вершин ∆AВС:

OA = OB = OC

Но тогда из О можно провести окруж-ть, на которой будут лежать точки А, В и С. Она как раз и окажется окружностью, описанной около треугольника. Так как серединные перпендикуляры пересекаются только в одной точке, то и окруж-ть около треуг-ка можно описать лишь одну.

Из теоремы следует важный вывод:

Как найти центр круга

Действительно, три точки, не лежащие на прямой, образуют на плоскости треуг-к.Окруж-ть, проведенная через его вершины, по определению и будет описанной окруж-тью.

Задание. Около равнобедренного треуг-ка с основанием длиной 6 описана окруж-ть радиусом 5. Какова длина боковых сторон этого треуг-ка?

Решение: Проведем радиусы ОА, ОВ и ОС к вершинам вписанного треуг-ка, а на основание ВС опустим перпендикуляр:

Как найти центр круга

Стоит обратить внимание, что точки А, О и Н лежат на одной прямой. Это высота, проведенная к основанию

Она же, по свойству равнобедренного треуг-ка, является медианой, то есть Н – середина ВС. Тогда ОН оказывается серединным перпендикуляром.

Сначала найдем ВН, он равен половине ВС:

BH = BC:2 = 6:2 = 3

Далее изучим ∆ОНВ. Он прямоугольный, то есть для него верна теорема Пифагора:

Как найти центр круга

Задание. Выведите формулу, которая связывает длину стороны равностороннего треуг-ка с радиусом описанной окружности.

Решение. Обозначим буквой a сторону треуг-ка, а буквой R – радиус описанной окруж-ти. Также проведем один серединный перпендикуляр:

Как найти центр круга

Так как ∆AВС – равносторонний, то все его углы, в частности, ∠AВС, составляют 60°.

Заметим, что ∆ВОС и ∆АОВ равны по трем одинаковым сторонам, поэтому

Как найти центр круга

В четырехуг-к окруж-ть удается вписать не всегда. Для этого должно соблюдаться одно условие:

Как найти центр круга

Действительно, пусть около четырехуг-ка ABCD описана окруж-ть:

Как найти центр круга

Тогда вся окруж-ть может быть разбита на две дуги: ⋃ВАD и ⋃ВСD. Их сумма составляет 360°:

Как найти центр круга

Аналогично доказывается утверждение и для другой пары противоположных углов, ∠ADC и ∠ABC.

Обратное утверждение также справедливо:

Как найти центр круга

Докажем эту теорему методом от «противного». Пусть есть четырехуг-к AВСD, у которого сумма противоположных углов составляет 180°, но вокруг него нельзя описать окруж-ть. Тогда проведем окруж-ть через любые три его вершины. Четвертая вершина (пусть это будет D) не может оказаться на окруж-ти. То есть она находится либо внутри окруж-ти, либо вне ее. Сначала рассмотрим случай, когда точка оказывается внутри окруж-ти:

Как найти центр круга

Продолжим прямые AD и CD до пересечения окруж-ти в точках А’ и C’, а потом выберем произвольную точку D’ на окруж-ти между ними.

Теперь сравним ∆АСD и ∆АСD’. У обоих сумма углов одинакова и составляет 180°:

Как найти центр круга

Получается, что ∠D и ∠D’ должны быть равны, но ранее мы показали, что ∠D больше. Это противоречие означает, что точка D не может быть внутри окруж-ти. Аналогичным образом рассматривается второй случай, когда D лежит вне окруж-ти:

Как найти центр круга

Здесь, рассматривая ∆АСD и АСD’, можно показать, что ∠D меньше, чем ∠D’. Однако они должны быть равны друг другу, ведь в сумме с∠В должны давать 180°.             

Задание. В окруж-ть вписан четырехуг-к AВСD, причем∠А составляет 110°, а ∠В – 62°. Найдите два других угла четырехуг-ка.

Решение. 

Как найти центр круга

Здесь надо просто использовать тот факт, что противоположные углы в AВСD должны давать в сумме 180°:

Задание. Докажите, что если трапеция вписана в окруж-ть, то она равнобедренная.

Решение.

Как найти центр круга

Пусть в окруж-ть вписана трапеция AВСD, причем AD и ВС– ее основания. Тогда∠А и ∠В – это односторонние углы при параллельных прямых ВС и AD и секущей AВ, и в сумме они дают 180°. Но так как AВСD вписана в окруж-ть, то и ее противоположные углы, ∠А и ∠С, также должны составлять в сумме 180°:

∠А + ∠B = 180°

∠А + ∠C = 180°

Естественно, эти равенства могут одновременно справедливыми только в том случае, если∠В и ∠С одинаковы. Они являются углами при основании трапеции. Если они одинаковы, то трапеция – равнобедренная (это признак равнобедренной трапеции).

Порядок выполнения работы

Начертить
в тетрадях свою плоскую фигуру по
размерам, с указанием осей координат.

Определить
центр тяжести аналитическим способом.

  1. Разбить
    фигуру на минимальное количество
    фигур, центры тяжести которых, мы знаем,
    как определить.

    Указать
    номера площадей и координаты центра
    тяжести каждой фигуры.

    Вычислить
    координаты центра тяжести каждой
    фигуры.

    Вычислить
    площадь каждой фигуры.

    Вычислить
    координаты центра тяжести всей фигуры
    по формулам (положение центра тяжести
    нанести на чертеж фигуры):

Установка
для опытного определения координат
центра тяжести способом подвешивания
состоит из вертикальной стойки 1


(см. рис.), к которой прикреплена игла 2

.
Плоская фигура 3


изготовлена из картона, в котором легко
проколоть отверстие. Отверстия А


и В


прокалываются в произвольно расположенных
точках (лучше на наиболее удаленном
расстоянии друг от друга). Плоская фигура
подвешивается на иглу сначала в точке
А

,
а потом в точке В

.
При помощи отвеса 4

,
закрепленного на той же игле, на фигуре
прочерчивают карандашом вертикальную
линию, соответствующую нити отвеса.
Центр тяжести С


фигуры будет находиться в точке
пересечения вертикальных линий,
нанесенных при подвешивании фигуры в
точках А


и В

.

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля — до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

«Снятие эмоционального напряжения у детей и подростков с помощью арт-практик и психологических упражнений»

Сертификат и скидка на обучение каждому участнику

Муниципальное бюджетное общеобразовательное учреждение

средняя общеобразовательная школа №1 с. Александров – Гай

Исследовательская работа по математике:

Как найти центр круга

Подготовил: Амиров Марат, ученик 6 «а»

класса МБОУ СОШ №1 с. Александров – Гай

Руководитель: Кушкумбаева С.М., учитель математики МБОУ СОШ №1 с. Александров — Гай

С. Александров – Гай

Глава 1 «Способы нахождения окружности» …………………………………..4

Глава 2 «Практическая часть»…………………………………………………..6

Список литературы и источников………………………………………………12

Окружность — совокупность точек, находящихся на равном расстоянии от одной точки, называемой центром. Однако в тех случаях, когда вам дана одна только окружность, нахождение ее центра может быть непростой задачей. Поэтому цель моей исследовательской работы: изучить способы определения центра окружности. Исходя из цели были поставлены задачи:

— найти самый простой способ определения центра окружности;

— сравнить несколько способов определения центра окружности;

Популярные статьи  Букет из конфет: тюльпаны к 8 марта!

— практические способы определения центра окружности.

Актуальность ислледовательской работы заключается в том, что в повседневной жизни людей часто приходится находить центр окружности, но не каждый знает как это правильно сделать. Поэтому изучение данной темы поможет найти правильное решение проблемы и определить оптимальный вариант для человека любой професии.

При написании исследовательской работы были использованны электронные источники и литература. Электронные источники помогли найти теоретический материал по теме, а учебники по математике были использованны для подбора задач и практической части работы.

Глава 1. Способы нахождения центра окружности.

центром

2. Для того чтобы найти центр окружности, надо сначала вписать ее в квадрат. То есть все стороны четырехугольника должны касаться круга. Для этого проведите с помощью линейки четыре ровные линии. Теперь соедините по диагонали два противоположных угла. Следите за тем, чтобы линия разбивала угол квадрата на две равные части. Соедините прямыми все 4 угла квадрата. Точка пересечения данных прямых и будет центром окружности.

Как найти центр круга

3. Для любого треугольника центр описанной окружности находится в точке пересечения срединных перпендикуляров. Если этот треугольник — прямоугольный, то центр описанной окружности всегда совпадает с серединой гипотенузы. Следовательно, если вписать в окружность прямоугольный треугольник, то его гипотенуза будет диаметром этой окружности.В качестве трафарета для этого способа подойдет любой прямой угол — школьный или строительный угольник, или просто лист бумаги. Поместите вершину прямого угла в любую точку окружности и сделайте отметки там, где стороны угла пересекают границу круга. Это конечные точки диаметра.Тем же способом найдите второй диаметр. В точке их пересечения

4.На круглую деталь накладываем лист бумаги так, что бы один его угол находился на окружности или крае круга. И отмечаем точки, где лист соприкасается другими краями с кругом. Отмечаем эти точки .

Как найти центр круга

Проводим прямую линию между отмеченными точками. Расстояние между ними является диаметром этого круга. Обрезаем лишнюю бумагу и проводим на детали прямую линию — диаметр.

Как найти центр круга

Достаточно переместить наш треугольник в другое положение и нарисовать еще один диаметр круга, как тут же в точке пересечения диаметров мы и получим искомый центр окружности…

5. Диаметр и радиус окружности.

Диаметр окружности — это отрезок прямой, соединяющий пару наиболее удаленных друг от друга точек окружности, проходящий через центр окружности. Слово «диаметр» произошло от греческого слова «diametros» — поперечный. Обычно диаметр обозначается латинской буквой D или значком Ø.

Диаметр можно найти по формуле: D = 2R, где диаметр равен удвоенному радиусу окружности.Радиус — расстояние от центра до любой точки окружности. Обозначается латинской R.Если известен радиус окружности, допустим, он равен 8 см, то значит D = 2 * 8 = 16 см.

Радиус окружности определяется по формуле : R = D :2

Глава 2 «Практическая часть»

Прямой угол детали закруглен дугой радиуса R

Как найти центр круга

С центрами в точках А и В строят еще две окружности радиуса R ; С – их точка пересечения. Дуга окружности радиуса R с центром в точке С и будет искомым закруглением.

Второй метод определения радиуса дуги (метод последовательных приближений)

Итак продолжим рассмотрение имеющейся ситуации.

Так как нам все равно необходимо найти центр окружности, то для начала мы из точек, соответствующих началу и концу дуги, проведем как минимум две дуги произвольного радиуса. Через пересечение этих дуг будет проходить прямая, на которой и находится центр искомой окружности.

Теперь нужно соединить пересечение дуг с серединой хорды. Впрочем, если мы из указанных точек проведем не по одной дуге, а по две, то данная прямая будет проходить через пересечение этих дуг и тогда искать середину хорды вовсе не обязательно.

Ну а дальше все просто: измеряем расстояние от пересечения дуг до начала (или конца) рассматриваемой дуги, а затем расстояние от пересечения дуг до точки, соответствующей высоте сегмента.

Если расстояние от пересечения дуг до начала или конца рассматриваемой дуги больше, чем расстояние от пересечения дуг до точки, соответствующей высоте сегмента, то значит центр рассматриваемой дуги находится ниже на прямой, проведенной через пересечение дуг и середину хорды. Если меньше — то искомый центр дуги выше на прямой.

Исходя из этого на прямой принимается следующая точка, предположительно соответствующая центру дуги, и от нее производятся те же измерения. Затем принимается следующая точка и измерения повторяются. С каждой новой точкой разница измерений будет все меньше.

Вот собственно и все. Не смотря на столь пространное и мудреное описание, для определения радиуса дуги таким способом с точностью до 1 мм достаточно 1-2 минут.

Теоретически это выглядит примерно так:

Рисунок 463.2. Определение центра дуги методом последовательных приближений.

А на практике примерно так:

Фотография 463.1. Разметка заготовки сложной формы с разными радиусами.

Тут только добавлю, что иногда приходится находить и чертить несколько радиусов, потому на фотографии так много всего и намешано.

Длина окружности и площадь круга

Вот мы и подошли с вами к самому интересному, формулам длины окружности и площади круга, давайте их запишем:

Как найти центр круга
Формулы длины окружности и площади круга

Эти формулы очень походы, в них есть двойка, число Pi и радиус, однако можно заметить, что у формулы длины окружности двойка слева, а у площади круга справа в степени.

Так как же их не путать? Очень просто: запомните, что вторая степень (или квадрат) должна быть у площади, значит двойка слева будет у длины.

Давайте это закрепим:

Как найти центр круга
Задание на длину окружности и площадь круга в ЕГЭ и ОГЭ

Вот так просто и быстро мы закрепили сразу обе формулы.

Как находить площадь и длину дуги сектора круга: задачи

А теперь перейдём к самому интересному — нахождению площади и длины дуги сектора круга. Многие ученики думаю, что это сложно, но на самом деле это не так. Я предлагаю записать 2 коротких алгоритма, с помощью которых вы сможете легко найти площадь или длину дуги сектора.

Как найти центр круга
2 алгоритма для поиска площади и длины дуги сектора

И конечно же давайте закрепим эти алгоритмы на практике:

Как найти центр круга
Задача на поиск площади сектора круга в ЕГЭ и ОГЭ

Теперь вы умеете решать задания на поиск площади сектора. Согласитесь, что с алгоритмом всё намного понятнее и проще?

Угол между диагоналями прямоугольника.

Формулы для определения угла меж диагоналей прямоугольника:

1. Формула определения угла меж диагоналей прямоугольника через угол между стороной и диагональю:

β = 2α

2. Формула определения угла между диагоналями прямоугольника через площадь и диагональ.

Прямоугольник.

Так
как прямоугольник имеет две оси симметрии, то его центр тяжести находится на
пересечении осей симметрии, т.е. в точке
пересечения диагоналей прямоугольника.

Треугольник.

Центр
тяжести лежит в точке пересечения его
медиан. Из геометрии известно, что
медианы треугольника пересекаются в
одной точке и делятся в отношении 1:2 от
основания. Как найти центр круга

Круг.

Так
как круг имеет две оси симметрии, то его
центр тяжести находится на пересечении
осей симметрии.

Полукруг.

Полукруг
имеет одну ось симметрии, то центр
тяжести лежит на этой оси. Другая
координата центра тяжести вычисляется
по формуле:
.
Как найти центр круга

Многие
конструктивные элементы изготавливают
из стандартного проката – уголков,
двутавров, швеллеров и других. Все
размеры, а так же геометрические
характеристики прокатных профилей это
табличные данные, которые можно найти
в справочной литературе в таблицах
нормального сортамента (ГОСТ 8239-89, ГОСТ
8240-89).

Пример
1.

Определить
положение центра тяжести фигуры,
представленной на рисунке.

Решение:

Как найти центр круга

Выбираем
оси координат, так чтобы ось Ох прошла
по крайнему нижнему габаритному размеру,
а ось Оу – по крайнему левому габаритному
размеру.

Разбиваем
сложную фигуру на минимальное количество
простых фигур:

прямоугольник
20х10;

треугольник
15х10;

круг
R=3
см.

Вычисляем
площадь каждой простой фигуры, её
координаты центра тяжести. Результаты
вычислений заносим в таблицу

Популярные статьи  Выжигатель на батарейках своими руками

№ фигуры

Площадь
фигуры А,

Координаты
центра тяжести

Ответ:


С(14,5; 4,5)

Пример
2

.


Определить координаты центра тяжести
составного сечения, состоящего из листа
и прокатных профилей.
Как найти центр круга

Решение.

Выбираем
оси координат, так как показано на
рисунке.

Обозначим
фигуры номерами и выпишем из таблицы
необходимые данные:

№ фигуры

Площадь
фигуры А,

Координаты
центра тяжести

Вычисляем
координаты центра тяжести фигуры по
формулам:

Ответ:


С(0; 10)

Понятие доли

Вы когда-нибудь заглядывали в тетради к старшеклассникам? Смотрите, какой у меня пример. 

Видите сложение, вычитание, умножение? Знаки этих действий известны: плюс, минус, точка. Деление же в примере обозначено горизонтальной чертой.На рисунке она выделена красным цветом. Я расскажу, когда в математике используют черту.

Мы умеем делить несколько предметов, но часто деление нужно, чтобы раздробить одно число на равные части — доли от целой величины.

Один разделить на два — это одна вторая. Что же это такое?

В жизни вы часто так делали. Например, один апельсин делили с другом: брали нож и разрезали его пополам.

Каждый из вас получал половину или одну долю.

На лесной полянке собралось девять друзей, апельсин делили на всех. Рассмотрите рисунок. Как называется каждая часть фрукта? 

Совершенно верно, это долька. Апельсин поделили на 9 одинаковых долек.Каждая 1 долька апельсина — это одна из девяти равных долей целого фрукта.

Вы теперь поняли, ребята, что в жизни человеку приходится не только пересчитывать предметы, но и делить (дробить) целое на части, вот так появилось в математике понятие доли и дроби.

Знак доли (дроби) обозначают дробной горизонтальной или наклонной чертой. Например, так — 1/9 (одна девятая). Запись придумали арабы в 16 веке.

Доли называют по количеству частей раздробленного одного предмета:

  • Разделите, например, яблоко на две равные части, у вас получится название доли «половина» или 1/2 (одна вторая)
  • Разрежьте яблоко на три части. Один кусок — это «треть» — 1/3 (одна третья)
  • Разломите на четыре доли — «четверть» — 1/4 (одна четвертая)

Знание о долях помогает решить задачи.

Запомните правило по математике нахождения доли.Чтобы найти долю от числа надо число разделить на эту долю. В дроби число, на которое делят, записано под чертой и называется знаменателем. То число, которое надо разделить, пишут над чертой. Это числитель.

Задание 1

Найдите пятую долю от числа 25. Это значит, что надо выполнить действие деления.

Привычный пример 25 : 5 можно записать вот таким образом:

Или так — 25/5. 25 – это числитель, а 5 — знаменатель.

25: 5 = 5

Ответ: одна пятая доля от числа 25 равна пяти.

Задание 2

Чему равна 1/4 доля от полоски длинной 16 см?

Полоску согните пополам, ещё раз пополам. Разверните. На сколько долей линией сгиба разделили полоску? Правильно, на 4.

Закрасьте одну такую долю.

Какую долю вы закрасили? (одну четвёртую)

16 : 4 = 4(см)

Ответ: длина одной четвертой доли полоски составляет 4 см.

Задание 3

Решите задачи на понятие доли. Рассмотрите рисунки. Какая доля каждой фигуры закрашена серым цветом?

Рассуждаем так.

На рисунке 1 отрезок разделили на 7 частей.Значит, закрашена одна седьмая (1/7) доля фигуры.

Проверьте:

На следующих рисунках заштрихована 1/16 доля квадрата, 1/6 доля шестиугольника, 1/5 доля круга.

Чтобы разобрать понятие массовой доли, представьте себе килограмм яблок (1000 г), который мама купила своим трем детям.

Из этого килограмма самому младшему ребенку досталась половина всех яблок (несправедливо, конечно!). Старшему — лишь 200 г, а среднему — 300 г. 

Значит, массовая доля яблок у младшего ребенка составит половину, или одну вторую (1/2) массовую долю.

У старшего ребенка будет:

1000 : 200 = 5 — одна пятая (1/5) массовая доля

Далее рассуждаем так:

Младшему ребенку дали половину яблок.

1000 : 2 = 500(г)

Яблоки разделили между детьми по 500г, 200г и 300г. Вы знаете, что 500 — это 5 сотен, 200 — 2 сотни, 300 — 3 сотни.

На сколько сотен разделили все яблоки?

5 сотен + 2 сотни + 3 сотни = 10 сотен.

Сколько граммов будет в одной десятой доле?

1000 : 10 = 100 (г) в одной десятой доле

У среднего ребенка 300 г. Во сколько раз больше, чем 100 г?

300 : 100 = 3

В три раза. Значит, у среднего ребенка будет не одна, а три десятых массовых долей 3/10.

Ребята, вы молодцы. Верное решение.

Окружность. Круг

А сейчас познакомимся с самой совершенной фигурой, как считал древнегреческий математик Пифагор. Ответьте на вопрос: «Какие известные вам геометрические плоские фигуры не содержат углов?»

Правильно, круги, а еще окружности.

Совершенная форма этой геометрической фигуры привлекает внимание художников, дизайнеров, архитекторов. Они используют её в своих изделиях для украшения. Ограда на набережной реки Невы в Санкт-Петербурге 

Ограда на набережной реки Невы в Санкт-Петербурге 

Назовите предметы из обычной жизни, которые по форме похожи на эти фигуры.Правильно, круглые очки. Вы очень внимательные ребята.

Посмотрите на рисунок. Назовите окружности и круги.

Проверьте себя:

Но как начертить такие ровные окружности? Приглашаю на помощь лучшего друга.

Эх, циркач, удалой.
Чертит круг одной ногой,
А иглой — проткнет бумагу,
Он воткнется — и ни шагу.

Знакомьтесь, ребята, к нам пришел новый житель страны Геометрии – чертежный инструмент. Он поможет разобраться, как изобразить круг.

Привет, я циркуль. Мое имя произошло от старинного латинского слова «циркулюс», что означает круг.

Давайте потренируемся чертить циркулем:

  1. В тетради или альбоме поставьте точку карандашом. Это центр окружности.
  2. Аккуратно раздвиньте «ножки» циркуля, например, на 30 мм. Измерьте расстояние между грифелем и иголкой по линейке.
  1. Крепко воткните иголку циркуля в центр, а другой «ножкой», вращая головку циркуля большим, указательным и средним пальцем, начертите грифелем замкнутую линию.

Линию, нарисованную грифелем циркуля, называют окружностью.

Точки на окружности А и В расположены от центра на равном расстоянии. Их соединяет отрезки ОА и ОВ – называются радиусами окружности.

Продлите по линейке отрезок ВО поперек всей окружности. Вы начертили диаметр окружности— отрезок ВС. Он прошел через центр и соединил 2 точки на окружности В и С.

Как вы думаете, сколько диаметров можно провести в одной окружности?

Совершенно верно — сколько угодно, как говорят математики — бесконечное число.

Посмотрите на колесо от велосипеда.

Втулка — это центр, а спицы напоминают радиусы и диаметры.

Если величину диаметра умножить на 3, мы получим примерную длину окружности. Точную формулу вычисления вы узнаете в 7 классе на уроках геометрии, а также, что такое вписанная и описанная окружности.

А сейчас возьмите альбомный лист, начертите окружность и по этой границе аккуратно вырежьте фигуру. Её можно закрасить любым цветом, например, синим, как на рисунке. Это круг — часть плоскости, ограниченная окружностью.

У круга есть площадь. Окружность вырезать невозможно, потому что это просто замкнутая кривая линия вокруг круга — его граница.

Решите задачу

На клетчатой бумаге нарисован круг, площадь которого равна 40. Найдите площадь закрашенной части фигуры.

Рассуждайте так: на рисунке закрашена четвертая доля фигуры. Значит надо выполнить деление.

40 : 4 = 10

Ответ: площадь равна 10

Оцените статью
( Пока оценок нет )
Добавить комментарий