НАСТРОЙКА
3.1. Сразу после подключения питания (см. п 2.3.) засветятся и погаснут все светодиоды. Далее, снизу вверх, по одному, начнут зажигаться периферические светодиоды. После этого СтопРазряд перейдет в режим настройки уставок. Замигает единственный светодиод, указывающий текущую уставку по напряжению срабатывания защиты (начальная заводская уставка 12,3В).
Постукивая по корпусу устройства можно установить новый уровень напряжения срабатывания в диапазоне от 11.7В до 12,6В с шагом 0,1В.
Добившись мигания светодиода на нужном вам уровне напряжения, прекратите постукивание на 2-3 секунды.
3.2. Следующим этапом настройки будет выбор времени срабатывания защиты, при этом устройство начнет мигать уже парами светодиодов начиная с минимальной заводской уставки в 10 минут. Аналогичным п.3.1. образом можно выбрать уставку в диапазоне от 10 до 50 минут.
Аналогично п.3.1 добившись мигания светодиодов на нужной вам задержке срабатывания, прекратите постукивание на 2-3 секунды.
3.3. Последним этапом настройки является установка чувствительности сенсора вибраций. От самого чувствительного (сверху) до самого грубого (снизу) при этом устройство начнет мигать отрезками по три светодиода.
,
Аналогично п.3.1 и 3.2, добившись мигания светодиодов на нужном вам уровне чувствительности, прекратите постукивание на 2-3 секунды. Прибор запомнит последнее установленного значение времени и перейдет в основной режим работы.
3.4. Сброс уставок. Если требуется сбросить и переустановить сохраненные уставки времени, напряжения или чувствительности срабатывания, отключите устройство от плюсовой клеммы на 2-3 секунды (см.п 2.3.) и повторите действия указанные в п. 3.1, 3.2 и 3.3.
Как сделать индикатор заряда аккумулятора на светодиодах?
Существуют десятки разнообразных схем контроля, но результат они выдают идентичный. Подобное устройство возможно собрать самостоятельно из подручных материалов. Выбор схемы и комплектующих зависит исключительно от ваших возможностей, фантазии и ассортимента ближайшего магазина радиотоваров.
Вот схема для понимания как работает индикатор заряда аккумулятора на светодиодах. Такую портативную модель можно собрать «на коленке» за несколько минут.
Д809 – стабилитрон на 9В ограничивает напряжение на светодиодах, а на трёх резисторах собран сам дифференциатор. Такой светодиодный индикатор срабатывает на силу тока в цепи. При напряжении 14В и выше сила тока достаточно для свечения всех светодиодов, при напряжении 12-13,5В светятся VD2 и VD3, ниже 12В — VD1.
Более продвинутый вариант при минимуме деталей можно собрать на бюджетном индикаторе напряжения — микросхеме AN6884 (KA2284).
Схема led индикатора уровня заряда АКБ на компараторе напряжения
Схема работает по принципу компаратора. VD1 – стабилитрон на 7,6В, он служит в качестве эталонного источника напряжения. R1 – делитель напряжения. При первоначальной настройке он выставляется в такое положение, чтобы при напряжении 14В светились все светодиоды. Напряжение, поступающее на входы 8 и 9, сравнивается через компаратор, а результат дешифруется на 5 уровней, зажигая соответствующие светодиоды.
Описание схемы, конструкция и настройка разрядного устройства для аккумуляторов
Схема собрана на макетной плате.
R1 – 1…4k7; R2 – 2k; R3 – 1k; R4 – 430; R5 – 100; R6 – 560; R7 – 3k9; C1, C2 – 0,1…0,33; K1 – CMA3 12VDC (792H) 30A; K2 – РГК15.3 (5-6v); DA1 – 7806; DA2 – LM324A; VT1 – кт972А.
Вместо реле К2 можно поставить любое маломощное реле на 12 Вольт, подключив его параллельно нагрузке.
В качестве таймера разряда можно использовать любой кварцевый электро-механический будильник или настенные часы с питанием от батарейки АА.
Для этого надо подключить маломощное реле на 12 вольт и контактом разрывать питание электромеханических часов, предварительно установив стрелки на 12 часов. После полного разряда реле отключится, часы остановятся и покажут время разряда.
Контакт реле К2 с помощью проводов припаивается к кусочку двухстороннего стеклотекстолита, на одной стороне которого сделана фаска, чтобы его легко можно было вставить между батарейкой и контактом в часах.
Rн — две автомобильные лампы накаливания: одна на 55Вт, другая на 21Вт. Лампа на 21 Вт включена постоянно и ипользуется для тренировки и определения емкости аккумуляторов от ИБП на 12 вольт емкостью 7-12 A/h, а лампа на 55Вт подключается тумблером, средний ток разряда составляет 6 А и в таком режиме происходит диагностика и восстановление АКБ емкостью 55-75 Ампер-часов.
Кнопка S1 служит для запуска процесса разряда, цепочка R1 — VD1 нужна для настройки разрядного устройства от маломощного регулируемого источника питания при отключенных нагрузочных лампах. Стабилизатор DA1 служит для создания опорного напряжения, питания компаратора DA2 и реле K2. Делители напряжения R2 – R3 и R4 – R5 – R6 определяют порог отключения нагрузки от аккумулятора. Транзистор VT1 — ключ включения/отключения реле К1. Компаратор DA2 управляет включением/отключением нагрузки при заданном напряжении (10,2В) на аккумуляторе. На делителе R2-R3 напряжение в три раза меньше напряжения на аккумуляторе, то есть при Uakk = 10,2 V напряжение на выводе 12 DA2 составляет 3,4 вольта и это пороговое напряжение нужно выставить с помощью R5 на выводе 13 DA2.
Сделать стабилизатор тока разряда не составляет технических трудностей, но для тренировки АКБ и определения емкости с погрешностью 10% достаточно мощность ламп нагрузки разделить на 12 вольт и умножить на 0,9. Это будет средний ток разряда, который надо умножить на время разряда. Так, для данного устройства, мощность ламп составляет 76Вт, ток при 12 В будет 6,33 А, плюс ток, потребляемый схемой (в основном обмотка К1) порядка 0,2 А. 6,53 В умножаем на 0,9 и получаем 5,87 А. При времени разряда 10 часов емкость аккумулятора 58,7 А/час, при времени 6 часов — около 35 А/часов.
Для настройки необходим цифровой мультиметр и регулируемый источник постоянного напряжения
Процесс настройки заключается в следующем:
Схема регулируемого блока питания собрана на LM317T в стандартном включении. Единственное отличие – два переменных резистора, один для грубой, другой для точной регулировки напряжения. Резистор номиналом 680 Ом устанавливают в среднее положение, резистором 6,8 кОм выставляется напряжение 10,2 вольта. При этом напряжении диапазон регулировки «точного» резистора +/- 1,3 вольта.
Порядок работы с устройством заряд автомобильных батарей
Если фактическая емкость аккумулятора менее 50%, чем заявленная производителем,
будьте готовы к замене аккумулятораСхема светодиодной лампы на 220в
Напряжение на светодиоде
Лампа ЭРА А65 13Вт
Как паять светодиодную ленту
Светодиодная лента на 220 в
Простое зарядное устройство
Общедомовой учет тепла
Схема драйвера светодиодов на 220
Подсветка для кухни из ленты
Подсветка рабочей зоны кухни
LED лампа Selecta g9 220v 5w
Светодиодная лампа ASD LED-A60
Схема светодиодной ленты
Схема диодной лампы 5 Вт 220в
Простой цифровой термометр своими руками с датчиком на LM35
Схема индикатора
В электрической схеме контроля уровня заряженности аккумулятора на 12 Вольт не содержится ни стабилитронов, ни сложных микросхем, ни транзисторов. Она состоит из включенных последовательно резисторов и светодиодов.
Схема индикатора
Работа устройства основана на начальном напряжении загорания светодиода, представляющего собой полупроводник.
При включении с резисторами последовательно каждый светодиод загорается после превышения напряжением суммы светодиодов на соответствующем отрезке цепи.
Предел напряжения открытия или загорания светодиода находится в диапазоне 1,8-2,6 В в зависимости от его модели. Каждый последующий элемент начинает гореть после включения предыдущего.
Насколько точен индикатор?
Начнем с того, что индикатор отображает состояние только одной ячейки (банки). Что творится в остальных пяти, неизвестно. Кроме того, обычно индикатор устанавливают в средние ячейки, а они меньше подвержены износу, чем крайние.
Далее, поскольку ареометр имеет один-два поплавка, то ни о какой точности вообще речи быть не может. У отечественных производителей за низкий заряд принято 70% емкости, у зарубежных – нередко 50%. То есть более-менее точно узнать степень заряда в этих диапазонах просто невозможно.
Ну и, конечно, подобные ареометры имеют простую конструкцию. В них могут создаваться газовые пробки, шарик может «залипать», что приводит не только к большой погрешности, но и к полному отказу индикатора. Таким образом, доверять встроенному в аккумулятор ареометру не стоит. Взглянуть перед поездкой под капот машины можно, но нужно быть готовым, что состояние АКБ совсем не то, какое показывает «глазок».
На этом разговор о встроенных в автомобильные аккумуляторы ареометрах можно закончить. Теперь мы знаем, как он устроен, что показывает и насколько его показаниям можно доверять.
Спасибо, помогло!94Не помогло10
Сейчас читают:
Почему при зарядке аккумулятора на машине кипит электролит
Как правильно заряжать аккумулятор автомобиля
Нет зарядки аккумулятора ВАЗ 2110 инжектор: причины и способы их устранения
Как зарядить автомобильный аккумулятор зарядкой от ноутбука
Как найти утечку тока в автомобиле или почему разряжается аккумулятор?
Описание устройства
Перед применением индикатора важно аккуратно постучать по нему любым твердым предметом. После такого воздействия пузырьки воздуха, которые могут помешать осмотру устройства, поднимаются к поверхности
В результате оттенок датчика можно будет рассмотреть более подробно.
Во время зарядки устройства показатель плотности электролита начинает возрастать возле самих электродов. Выше расположения электродов плотность начинает значительно увеличиваться из-за начала диффузии. Индикатор АКБ на такой процесс даёт реакцию, что в некоторых случаях может привести к неправильному результату. Несмотря на стопроцентный заряд батареи индикатор может сохраняться чёрного цвета.
Такой процесс можно объяснить тем, что электролит с большой плотностью не успевает полностью перемешаться с электролитом меньшей плотности.
Принцип работы индикатора аккумулятора
Поскольку индикатором оснащается каждый экземпляр АКБ, где это предусмотрено, то его разработали по принципу максимальной простоты и дешевизны. По механизму действия он напоминает простейший ареометр, где плотность раствора определяется по последнему из всплывших поплавков.
Каждый из них имеет собственную калиброванную плотность и будет плавать только в жидкости, плотность которой окажется выше. Более тяжёлые при том же объёме затонут, лёгкие всплывут.
Во встроенном индикаторе применяются красные и зелёные шарики, также имеющие различную плотность. Если всплыл самый тяжёлый – зелёный, значит плотность электролита достаточно высока, аккумулятор можно считать заряженным.
По физическому принципу его работы плотность электролита линейным образом связана с его электродвижущей силой (ЭДС), то есть напряжением на выводах элемента в состоянии покоя без нагрузки.
Когда зелёный шарик не всплывает, то в окне индикатора виден красный. Это означает, что плотность мала, батарею надо подзарядить. Прочие цвета, если они предусмотрены, означают, что ни один шарик не всплывает, им просто не в чем плавать.
Уровень электролита мал, батарея нуждается в техническом обслуживании. Обычно это доливка дистиллированной воды и доведение плотности до нормы зарядом от внешнего источника.
Погрешности в работе индикатора
Разница между индикатором и измерительным прибором состоит в больших погрешностях, грубой форме отсчёта показаний и отсутствии какого-либо метрологического обеспечения. Доверять или нет подобным устройствам – дело индивидуальное.
Можно привести несколько примеров неточной работы индикатора, даже если он при этом совершенно исправен:
- полностью отсутствует учёт температуры аккумулятора, хотя от неё во многом зависит соотношение между плотностью электролита и степенью заряженности батареи;
- никак не аттестуется температурная погрешность плотности материала самих индикаторных шариков;
- аккумулятор состоит из шести независимых банок, а индикатор устанавливается только на одну из них, состояние остальных не контролируется даже приблизительно, хотя одним из самых частых случаев отказа батареи бывает именно проблема с одной банкой в последовательной цепи, причём индикатор ставится на одну из средних, а отказывают чаще именно крайние;
- плотность электролита – далеко не единственный показатель состояния батареи, в том числе и уровня заряженности;
- в рабочей зоне, где как раз и происходят все реакции, замер плотности не производится, а перемешивается электролит крайне медленно из-за пористого характера сепараторов между электродами.
Если строго оценивать работу индикатора по этим критериям, то его показания не несут вообще никакой полезной информации, поскольку слишком много причин ведут к их ошибочности.
Схема самодельного индикатора.
Итак к схеме (нарыл в интернете). Схема собрана, проверена, заработала сразу.
В схеме используется TL431.
Очень удобная штука, я вам скажу. Многие схемы с ней сильно упрощаются. Так что можете закупать их сразу пачку, как я.
На ее основе можно так же сделать и балансир для аккумулятора, но об этом в другой раз.
Брал TL431 у китайцев здесь. У них пачка стоит, как у нас одна штука.
Транзистор BC547 очень распространен, стоит копейки и есть в любом магазине радиокомпонентов. Можно , но он и так очень дешевый. Если только тоже пачку взять.
Резисторов я уже закупил в свое время разных номиналов. Вот очень дешевый набор резисторов, который еще долго будет вас радовать.
R1*(у меня)=4,6K; R2=1К; R3=11К(подобран под транзистор BC547); R4=1,5К(подбираем под светодиод в зависимости от напряжения питания схемы).
Светодиод берем любой маломощный трех миллиметровый, просто smd не удобно монтировать в корпус.
Расчет резистора R1 под необходимое напряжение срабатывания схемы осуществляется по формуле: R1=R2*(Vo/2,5В — 1).
Я рассчитывал чтобы индикатор загорался при 14В, то есть при 3,5В на банку (мой АКБ состоит из четырех АКБ номиналом 3.7В). В полностью заряженном состоянии 16.8В (по 4.2В на банку). Возьмем R2 равный 1К. (При настройке на низкие напряжения, например 3.6В, необходимо R2 брать 10К).
Итак рассчитываем на 14В. R2=1КОм=1000 Ом. R1=1000*(14В/2,5В-1)=1000*(5,6-1)=1000*4.6=4600 Ом = 4,6КОм (Для шуруповерта на 14.4В (4 банки по 3,7В), переделанного на литий).
Для 12В (3 банки по 3,7В) шуруповерта, переделанного на литий: срабатывание при 10,5В R2=1К R1=1000*(10,5/2,5-1)= 3,2КОм.
Для 18В (5 банок по 3,7В) шуруповерта, переделанного на литий: срабатывание при 17,5В R2=1К R1=1000*(17,5/2,5-1)= 6КОм.
Список значений R1 при R2=1КОм для тех кому лень считать:
- 5В – 1К
- 7,2В – 1,88К
- 9В – 2,6К
- 10,5В — 3,2К
- 12В – 3,8К
- 14В — 4,6К
- 15В — 5К
- 17,5В — 6К
- 18В – 6,2К
- 20В – 7к
- 24В – 8,6к
Готовый индикатор разряда аккумулятора шуруповерта.
Работает четко, стабильно. В настройке не нуждается.
Набор резисторов из 30 номиналов по 10шт. Вего 300 шт.Пачка TL431 за копейки.Пачка BC547.
Обозначения цветов
Единый стандарт на цветовое кодирование отсутствует, более-менее существенную информацию предоставляют зелёный и красный цвета.
Черный
Во многих случаях это означает пониженный уровень электролита, батарею надо снять и отправить на стол мастеру по аккумуляторам.
Белый
Примерно то же, что и чёрный, многое зависит от конкретного конструктивного исполнения индикатора. Не стоит задумываться, в любом случае АКБ требует дальнейших разбирательств.
Красный
Несёт уже больше смысла. В идеале этот цвет означает пониженную плотность электролита. Но никак не должен призывать к доливке кислоты, прежде всего следует оценить степень заряженности и довести её до нормы.
Зеленый
Означает, что с батареей всё в порядка, электролит в норме, аккумулятор заряжен и готов к работе. Что далеко не факт по изложенным выше причинам.
Как сделать индикатор заряда аккумулятора на светодиодах?
Существуют десятки разнообразных схем контроля, но результат они выдают идентичный. Подобное устройство возможно собрать самостоятельно из подручных материалов. Выбор схемы и комплектующих зависит исключительно от ваших возможностей, фантазии и ассортимента ближайшего магазина радиотоваров.
Вот схема для понимания как работает индикатор заряда аккумулятора на светодиодах. Такую портативную модель можно собрать «на коленке» за несколько минут.
Д809 – стабилитрон на 9В ограничивает напряжение на светодиодах, а на трёх резисторах собран сам дифференциатор. Такой светодиодный индикатор срабатывает на силу тока в цепи. При напряжении 14В и выше сила тока достаточно для свечения всех светодиодов, при напряжении 12-13,5В светятся VD2 и VD3, ниже 12В — VD1.
Более продвинутый вариант при минимуме деталей можно собрать на бюджетном индикаторе напряжения — микросхеме AN6884 (KA2284).
Схема led индикатора уровня заряда АКБ на компараторе напряжения
Схема работает по принципу компаратора. VD1 – стабилитрон на 7,6В, он служит в качестве эталонного источника напряжения. R1 – делитель напряжения. При первоначальной настройке он выставляется в такое положение, чтобы при напряжении 14В светились все светодиоды. Напряжение, поступающее на входы 8 и 9, сравнивается через компаратор, а результат дешифруется на 5 уровней, зажигая соответствующие светодиоды.
Схема индикатора разряда аккумулятора
Стабилитрон работает таким образом, что начинает проводить ток при превышении на нем определенного напряжения, порог которого мы можем установить с помощью делителя напряжения на резисторах R1 и R2. В случае индикатора разряда, светодиодный индикатор должен гореть, когда напряжение батареи меньше, чем необходимо. Поэтому в схему добавлен n-p-n транзистор.
Как можно видеть регулируемый стабилитрон регулирует отрицательный потенциал, поэтому в схему добавлен резистор R3, задачей которого является включение транзистора, когда TL431 выключен. Резистор этот на 11k, подобранный методом проб и ошибок. Резистор R4 служит для ограничения тока на светодиоде, его можно вычислить с помощью закона Ома.
Конечно, можно обойтись и без транзистора, но тогда светодиод будет гаснуть, когда напряжение упадет ниже выставленного уровня — схема ниже. Безусловно, такая схема не будет работать при низких напряжениях из-за отсутствия достаточного напряжения и/или тока для питания светодиода. Данная схема имеет один минус, который заключается в постоянном потреблении тока, в районе 10 мА.
Инструкция по изготовлению
Если есть желание, знания по электронике и время, можно изготовить контроллер зарядки аккумулятора своими руками. Конструктивно устройство будет состоять из электронного блока, на корпусе которого будут расположены три диода красного, зеленого и синего цвета. Цвета диодов можно выбрать любые, главное, правильно оценивать полученные результаты.
Назначение данного устройства – контролировать работу автомобильного аккумулятора с напряжение электросети от 6 до 14 В. Этот прибор схож с тем, что продается в магазине. Речь идет о наборе DC-12 В, о котором упоминалось выше. Принцип действия обоих устройств одинаков.
Для изготовления контроллера понадобятся следующие детали:
- для размещения компонент печатная плата;
- транзисторы: ВС547 и ВС557;
- резисторы: сопротивлением 1 кОм – 2, 220 Ом – 3, 2,2 кОм – 1;
- диоды (стабилизаторы) на 9,1 и 10 В;
- набор светодиодов RGB (красный, зеленый, синий).
Перед сборкой следует проверить, чтобы контакты соответствовали цвету светодиодов. Проверку можно выполнить с помощью тестера. Это можно сделать с помощью тестера. Монтируя компоненты, желательно светодиоды вывести на проводах длиной 5-20 см, а не припаивать их к плате. Такую конструкцию легче расположить на приборной панели автомобиля.
Сборка устройства осуществляется по следующей схеме:
Простейшая схема контроллера
При сборке следует размещать комплектующие на печатной плате как можно более компактно, чтобы он не занимали много места. После подключения к бортовой электросети контроллер будет показывать текущий уровень зарядки аккумулятора.
При этом он будет лишь сигнализировать об определенном уровне, не показывая конкретных значений:
- если загорается светодиод красного цвета, это означает, что напряжение находится в пределах от 6 до 10 В — это критичный уровень;
- если горит синий светодиод, то заряд составляет 11-13 В – это оптимальное значение, которое соответствует нормальной работе аккумуляторной батареи;
- если аккумулятор полностью заряженный, загорается светодиод зеленого цвета.
Собранную панель рекомендуется устанавливать и подключать к бортовой сети на обратной стороне панели приборов, а на лицевую сторону вывести светодиоды на проводах. Если выполнять все работы аккуратно, то это не отразится на внешнем виде приборной доски.
Загрузка …
Как работает индикатор заряда?
Индикатор на аккумуляторе, о котором шла речь выше, является простейшим ареометром. Он предназначен для отображения состояния АКБ и примерной оценки ее готовности к работе. Чтобы лучше понять, как им пользоваться, кратко рассмотрим принцип работы этого индикатора.
Глазок состояния аккумулятора
Такие индикаторы имеют разную конструкцию, но все имеют один принцип работы, основанный на всплытии поплавков при определенной плотности электролита. Рассмотрим однопоплавковую конструкцию.
Конструкция однопоплавкового ареометра
Из рисунка мы видим, что зеленый шарик, имеющий заданный вес относительно своего размера, всплывает при определенной плотности среды и тонет, если плотность этой среды уменьшается. Предположим, плотность электролита (а это и есть среда), равняется нормальной, для заряженной АКБ – примерно 1.27. Шарик всплыл, а световод отобразил его присутствие на поверхности. Мы увидели зеленый «глазок» – батарея в порядке.
В процессе разряда аккумулятора плотность электролита в нем падает. В определенный момент (для шарика, конечно) она становится критической, и шарик тонет. Конусная линза-световод не видит его, а смотрит на корпус ареометра, который выполнен из черного пластика. Что это означает? В результате мы наблюдаем черный “глазок” – плотность электролита низкая, а значит, батарея разряжена до определенной степени. До какой – зависит от того, при какой плотности тонет шарик.
То есть у нас есть два варианта: батарея в норме или разряжена. Но есть третий вариант: уровень электролита очень низкий. В этом случае независимо от плотности шарик никак не может добраться до своего места у световода, но свет отражается уже не от черного корпуса ареометра, а от пониженного уровня электролита. Мы видим совсем другой цвет. Обычно это белый, но при загрязнении электролита он может меняться от желтого до светло-серого. В любом случае спутать его с любым другим тестовым невозможно.
Есть и еще один вариант ареометра – двухпоплавковый. Здесь в работе участвуют два шарика: зеленый и красный. Основное отличие от однопоплавковой системы – присутствие кольцевой призмы, передающей изображение на световод. Поднимаясь, шарик того или иного цвета оказывается в поле зрения призмы. Если он поднимется еще выше, то из ее поля зрения он уйдет.
В зависимости от плотности электролита в поле зрения световода оказывается тот или иной шарик, при критическом снижении уровня ни один шарик не виден: один располагается слишком низко, другой – чересчур высоко.
Для чего нужен индикатор заряда аккумулятора
Конструкция автомобильного аккумулятора состоит из шести батарей. Они соединены последовательно и выдают 13-13,5 В. Чем дольше используется АКБ, тем меньший срок он способен удерживать заряд.
Ситуация усугубляется в холодное время года, когда активно используется «печка». Даже оставленные включенными на ночь габаритные огни могут полностью «убить» батарею.
Современные АКБ оборудуются устройством, определяющим и показывающим уровень заряженности. Встроенный индикатор разряда автомобильного аккумулятора располагается на верхней стороне батареи.
Увидев красный глазок, владелец машины сразу понимает, что требуется зарядка. Если глазок зеленого цвета, то с АКБ все в порядке и беспокоиться не стоит.
Встроенный индикатор
Встроенные модели индикаторов заряда устанавливаются преимущественно на необслуживаемые автомобильные аккумуляторы. Такой индикатор включает в себя специальный поплавок, который также называется гидрометром. Нужно более подробно рассмотреть его строение и принцип функционирования. В состав такого устройства входят следующие детали: глазок индикатора, световод, поплавок, ножка индикатора.
Принцип работы у многих моделей гидрометров схож между собой. Индикатор может принимать три разных значения в следующих случаях:
- В процессе зарядки аккумуляторной батареи увеличивается показатель плотности электролита. В этом случае поплавок шарообразной формы окрашивается в зелёный оттенок, поднимается по отведённой трубе вверх, и его можно легко различить в глазок индикатора. Чаще всего шарик, окрашенный в зелёный цвет, всплывает на поверхность при заряженности устройства на 65 процентов и больше.
- В том случае, если шарик тонет в электролите, то это указывает на низкую по норме плотность. Заряд в батарее в этом случае не достигает нужного параметра. В это время в глазок индикатора пользователь сможет увидеть трубку, окрашенную в чёрный цвет. Это указывает на недостаток зарядки устройства. В некоторых типах индикаторов специально устанавливается шарик красного цвета, который поднимается по трубе при сниженной плотности. В этом случае при просмотре цвет датчика будет красным.
- Существует ещё один возможный случай снижения уровня электролита. Тут через глазок индикатора будет просматриваться поверхность электролита. Для улучшения ситуации нужно прибавить в устройство дистиллированной воды либо специального электролита. В случае необслуживаемого аккумулятора провести такую процедуру будет крайне сложно.
Схема индикатора разряда аккумулятора
Сами светоизлучающие диодные индикаторы бывают различных типов и цветов, рекомендуемые показаны на самой схеме. Из-за различий в прямом падении напряжения, токоограничивающие резисторы должны быть скорректированы для достижения наилучшей производительности и однородности свечения
По схеме R18-R22 предлагаются одинакового сопротивления — обратите внимание, что эти резисторы в итоге не должны быть равны. Однако, если все они одного цвета, одного номинала резистора будет достаточно
Цвет светодиода — уровень заряда
-
Красный
: от 0 до 25% -
Оранжевый
: 25 — 50% -
Желтый
: 50 — 75% -
Зеленый
: 75 — 100% -
Синий
: >100% напряжения
Здесь LM317 работает как простой источник опорного напряжения 1.25 В. Минимальное входное напряжение должно превышать выходное напряжение на значение в пару вольт. Минимальное входное напряжение = 1,25 В + 1,75 В = 3 В. Хотя LM317 имеет минимальную нагрузку по даташиту 5 мА, не обнаружен ни один экземпляр, который не функционировал бы при 3,8 мА. Именно резистор R5 (330 Ом) обеспечивает минимальную нагрузку.
При испытаниях оценивался уровень заряда 4,5 В батареи, именно для неё и приводятся напряжения на схеме. Настройка происходит так: сначала должны быть определены напряжения срабатывания каждого компаратора в соответствии с уровнем разряда батареи, потом напряжение должно быть разделено по коэффициенту деления делителя напряжения. Так, для 4,5 В АКБ, оно выглядит следующим образом:
Технические данные аккумуляторов
Основные применяемые типы аккумуляторов:
- Щелочные – Ni-Cd,
- Ni-MH – никель-металлогидридные,
- кислотные – аккумуляторы для автомобилей,
- Li-ion – литий-ионные,
- Li-po – литий-полимерные.
При эксплуатации аккумулятора необходимо учитывать его функциональные характеристики, такие как:
- значение ёмкости,
- выходное напряжение,
- размеры,
- сколько весит,
- допустимое минимальное напряжение,
- срок эксплуатации,
- коэффициент полезного действия,
- диапазон рабочей температуры,
- рабочий ток заряда и разряда.
Аккумулятор для автомобиля (АКБ) состоит из 6 последовательно соединённых аккумуляторных секций с напряжением питания каждой 2,1-2,16 В, на хорошей батарее напряжение 13-13,5 В.
Важно! Не допускается снижение напряжения ниже 9 вольт, поскольку из-за особенностей процессов, происходящих в батареях, садится плотность, что повышает температуру промерзания электролита и ускоряет разрушение электродов. В свою очередь, уменьшается и срок службы аккумулятора
Видео
Зарядка для телефона без розетки
Сегодня статья будет с процессом сборки простого индикатора уровня заряда аккумуляторов, но с более высокоточной схемой, которая пригодна для реального использования и может стать отличным дополнением на панели приборов вашего автомобиля.
Индикатор построен на базе микросхемы ELM339, она в свою очередь представляет из себя четыре отдельных компаратора в едином корпусе.
Компаратор имеет два входа и один выход, он просто сравнивает напряжение на входах, исходя из этого на выходе получаем либо логический 0, либо единицу.
Использованный в схеме компаратор можно найти на платах компьютерного блока питания, ориентируйтесь по цифрам 339, буквы могут отличаться в зависимости от производителя.
В качестве индикаторов задействованы 3 миллиметровые светодиоды.
Схема работает очень простым образом, имеем источник опорного напряжения в лице стабилитрона, цепочки из резисторов представляют из себя делители, которые создают на входах компараторов определенное напряжение, назовем их пороговыми.
Компаратор постоянно сравнивает эти напряжения с напряжением, которые образуют делитель на резисторах R5 и R6, этот делитель снижает напряжение тестируемой батареи в три раза, если напряжение на прямом входе компаратора больше чем на инверсном, то на выходе получаем логическую единицу или напряжение питания.
Светодиод светится, если всё наоборот, то на выходе получаем логическую 0 или массу питания, светодиод в данном случае не светится.
Входные делители подобраны в узком диапазоне, поскольку схема предназначена для работы в качестве индикатора заряда 12-вольтовых аккумуляторов.
Маломощный диод 4148 защищает микросхему компаратора от обратной полярности.
Токо-ограничивающие резисторы для светодиодов подбираются с сопротивлением от 1 до 2,2 килом, можно ограничиться всего одним резистором.
Печатная плата довольно компактна, рисовал на скорую руку, но разводка неплохая, кстати её вы можете скачать в конце статьи.
Для проверки этой платы нам нужен лабораторный источник питания на котором нужно выставить напряжение около 13,5 — 14 вольт, имитируя полностью заряженный автомобильный аккумулятор.
Загораются сразу все светодиоды, постепенно снижая напряжение на блоке питания мы можем наблюдать потухание светодиодов при определенных напряжениях.
Горение только красных светодиодов означает, что аккумулятор почти разряжен.
Можно пересчитать входные делители и использовать схему для аккумуляторов с иным напряжением, кстати эту схему можно также применить и в зарядных устройствах.
Плата___ скачать…
Автор; АКА Касьян
Данный индикатор заряда аккумулятора основан на регулируемом стабилитроне TL431. С помощью двух резисторов можно установить напряжение пробоя в диапазоне от 2,5 В до 36 В.
Приведу две схемы применения TL431 в качестве индикатора заряда/разряда аккумулятора. Первая схема предназначена для индикатора разрядки, а вторая для индикатора уровня заряда.
Единственная разница — это добавление n-p-n транзистора, который будет включать какой-либо сигнализатор, например, светодиод или зуммер. Ниже приведу способ вычисления сопротивления R1 и примеры на некоторые напряжения.
Индикатор заряда аккумуляторной батареи своими руками
При наличии свободного времени индикатор зарядки можно сделать в домашних условиях. Прибор будет контролировать работу аккумулятора при вольтовых характеристиках сети от 6 до 14 В.
АКБ в разрезе
Принцип функционирования прибора такой же, как и у моделей, изготовленных на заводе и продающихся в автомагазинах.
Для изготовления устройства потребуются:
- печатная плата;
- транзисторы DC 557 и BC 547;
- два стабилизатора – на 9,1 и 10 В;
- резисторы – 2х1000 Ом, 3х220 Ом и один на 2200 Ом;
- светодиоды различных цветов – синий, красный и зеленый.
Подготовленные заранее элементы собираются по любой из схем, которые можно легко отыскать в справочниках или в сети.
Все детали нужно расположить на печатной плате таким образом, чтобы они занимали как можно меньшую площадь и объем. Перед спайкой светодиодные элементы следует проверить на соответствие цвета и контакта при помощи тестера.
Настройка схемы выполняется подключением ее к регулируемому блоку питания и проверкой корректного отображения цвета элементов в требуемом режиме.
Паять светодиоды нужно на специальные проводки, а не к плате напрямую. Это позволит компактно и удобно расположить индикаторное устройство внутри автомобильной приборной панели.
Самостоятельно собранную плату нужно прикрепить к внутренней поверхности приборной панели, подключить к прикуривателю либо к бортовой сети. Светодиоды, припаянные к проводкам, выводятся на наружную сторону панели.